



## SIDDARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

#### **OUESTION BANK (DESCRIPTIVE)**

**Subject with Code: DIGITAL IMAGE PROCESSING (18EC0434)** 

Regulation: R18

Year &

Course & Branch: B.Tech - ECE Year & Sem: IV-B.Tech & I-Sem

#### <u>UNIT - I</u> <u>INTRODUCTION TO DIGITAL IMAGE PROCESSING, IMAGE SENSING & ACQUISITION</u>

| 1  | a | Recall the terms pixel and image.                                                                         | [L1][CO1] | [2M]    |
|----|---|-----------------------------------------------------------------------------------------------------------|-----------|---------|
|    | b | Define image resolution.                                                                                  | [L1][CO1] | [2M]    |
|    | c | What are the levels of image processing?                                                                  | [L1][CO1] | [2M]    |
|    | d | List out the various types of adjacency.                                                                  | [L1][CO1] | [2M]    |
|    | e | Recall the neighbors of a pixel using suitable representation.                                            | [L1][CO1] | [2M]    |
| 2  | a | What is the need for image processing? List out the fundamental steps in digital                          | [L1][CO1] | [5M]    |
|    |   | image processing which can be applied to images.                                                          |           |         |
|    | b | Explain the various types of digital image representations with examples.                                 | [L2][CO1] | [5M]    |
| 3  | a | Summarize the concepts of image modeling with relevant expressions.                                       | [L2][CO1] | [5M]    |
|    | b | Determine the array product and matrix product of the two images                                          | [L3][CO1] | [5M]    |
|    |   | $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} & B = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ |           |         |
|    |   | l-1 $1$ $1$ $1$ $2$ $2$ $1$                                                                               |           |         |
| 4  | a | List out the various applications of digital image processing.                                            | [L1][CO1] | [5M]    |
| 4  | b | Discuss about any one of the real time applications of DIP with suitable diagram.                         | [L1][CO1] | [5M]    |
| 5  | D | Explain about the basic pixel relationships and distance measures between pixels                          | [L2][CO1] | [10M]   |
| )  |   | in a digital image.                                                                                       | [L2][CO1] | [10M]   |
| 6  |   | Explain about image sampling and quantization process with proper steps.                                  | [L2][CO1] | [10M]   |
| 7  |   | Discuss about the spatial operations and Geometric spatial transforms related to                          | [L2][CO1] | [10M]   |
| '  |   | image processing.                                                                                         |           | [TOIVI] |
| 8  |   | Summarize the following mathematical operations on digital images with                                    |           |         |
|    |   | relevant expressions and diagrams.                                                                        |           |         |
|    |   | a)Arithmetic operations                                                                                   | [L2][CO1] | [5M]    |
|    |   | b) Linear versus Nonlinear Operations                                                                     | [L2][CO1] | [5M]    |
| 9  |   | Explain the following mathematical operations on digital images.                                          |           |         |
|    |   | a) Array & Matrix operations                                                                              | [L2][CO1] | [5M]    |
|    |   | b) Set & Logical operations                                                                               | [L2][CO1] | [5M]    |
| 10 |   | Explain the important terms related to Imaging Geometry with suitable                                     | [L2][CO1] | [10M]   |
|    |   | expressions.                                                                                              |           |         |

#### <u>UNIT - II</u> <u>IMAGE TRANSFORMS</u>

| 1  | a | List the important properties unitary image transforms.                            | [L1][CO2]  | [2M]  |
|----|---|------------------------------------------------------------------------------------|------------|-------|
|    | b | What do you mean by fast transforms?                                               | [L1][CO2]  | [2M]  |
|    | c | What is the goal of an image transform?                                            | [L1][CO2]  | [2M]  |
|    | d | What are advantages of Walsh transform over Fourier transform?                     | [L1][CO2]  | [2M]  |
|    | e | What is the main difference between DCT and DFT ?                                  | [L1][CO2]  | [2M]  |
| 2  | a | What is the need of image transform? List out various types of transform used in   | [L1][CO2]  | [5M]  |
|    |   | image processing?                                                                  |            |       |
|    | b | Discuss the importance of 2D Orthogonal and Unitary transforms.                    | [L2][CO2]  | [5M]  |
| 3  | a | Compare the computational complexity and number of operations of all the           | [L2][CO2]  | [5M]  |
|    |   | image transforms.                                                                  |            |       |
|    | b | List out the properties of 2D – Discrete Fourier Transform. Explain any one        | [L2][CO2]  | [5M]  |
|    |   | property with suitable expressions.                                                |            |       |
| 4  | a | Illustrate that DFT matrix satisfies the unitary property with necessary           | [L2][CO2]  | [5M]  |
|    |   | expressions.                                                                       |            |       |
|    | b | Show that Discrete Fourier Transform has property of periodicity.                  | [L2][CO2]  | [5M]  |
| 5  | a | Explain about 2D – Discrete Fourier Transform.                                     | [L2][CO2]  | [5M]  |
|    | b | Apply 2D – Discrete Fourier Transform for the following image                      | [L3][CO2]  | [5M]  |
|    |   | $f(m,n) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$               |            |       |
| 6  |   | Prove the following two properties of 2D-DFT:                                      | [L3][CO2]  | [10M] |
|    |   | i) Convolution                                                                     |            |       |
|    |   | ii) Correlation                                                                    |            |       |
| 7  | a | Discuss about 2D – Discrete Cosine Transform with relevant mathematical            | [L2][CO2]  | [4M]  |
|    |   | functions.                                                                         |            |       |
|    | b | Predict the 2D – Discrete Cosine Transform matrix for N =4.                        | [L3][CO2]  | [6M]  |
| 8  | a | Identify the image basis function of 1 D Walsh Transform when $N = 4$ .            | [L3] [CO2] | [5M]  |
|    | b | Summarize the properties of Walsh Transform.                                       | [L2] [CO2] | [5M]  |
| 9  | a | Determine the Hadamard matrix for $N = 8$ using recursive calculation from $N=2$ . | [L3] [CO2] | [6M]  |
|    | b | Summarize the properties of Hadamard Transform.                                    | [L2] [CO2] | [4M]  |
| 10 |   | Explain in brief about Hoteling Transform                                          | [L2] [CO2] | [10M] |



### <u>UNIT – III</u> <u>IMAGE ENHANCEMENT & COLOR IMAGE PROCESSING</u>

| 1  | a | Recall the term Histogram equalization.                                             | [L1][CO3] | [2M] |
|----|---|-------------------------------------------------------------------------------------|-----------|------|
|    | b | What do you mean by image enhancement?                                              | [L1][CO3] | [2M] |
|    | c | Define point processing.                                                            | [L1][CO3] | [2M] |
|    | d | Compare Pseudo color image processing and full color image processing.              | [L1][CO3] | [2M] |
|    | e | What are the applications of color image processing?                                | [L1][CO3] | [2M] |
| 2  | a | Discuss about basics of intensity transformation in image enhancement.              | [L2][CO3] | [5M] |
|    | b | Illustrate contrast stretching and bit plane slicing with suitable examples.        | [L2][CO3] | [5M] |
| 3  | a | Illustrate the image negative transformation with suitable example.                 | [L2][CO3] | [5M] |
|    | b | Explain the concept of histogram for various images with relevant diagrams.         | [L2][CO3] | [5M] |
| 4  | a | Explain the histogram equalization operation in image enhancement with              | [L2][CO3] | [5M] |
|    |   | necessary expressions.                                                              |           |      |
|    | b | Explain the procedure for histogram matching process.                               | [L2][CO3] | [5M] |
| 5  | a | Explain the mechanism of spatial domain filtering with suitable functions.          | [L2][CO3] | [5M] |
|    | b | Discuss about the linear and non-linear spatial filters with necessary expressions. | [L2][CO3] | [5M] |
| 6  | a | Illustrate the sharpening of images in spatial domain with Gradient and Laplacian   | [L2][CO3] | [5M] |
|    |   | operations with required expressions.                                               |           |      |
|    | b | Determine the median value of the marked pixels of the given matrix using 3 x 3     | [L3][CO3] | [5M] |
|    |   | [18 22 33 25 32 24]                                                                 |           |      |
|    |   | mask. F= 34 128 24 172 26 23                                                        |           |      |
|    |   | [22 19 32 31 28 26]                                                                 |           |      |
| 7  | a | Summarize the concept of frequency domain filtering with necessary steps.           | [L2][CO3] | [5M] |
|    | b | Discuss about the types of smoothing filters in frequency domain with the           | [L2][CO3] | [5M] |
|    |   | required expressions.                                                               |           |      |
| 8  | a | Explain the concept of Laplacian in frequency domain filtering of images.           | [L2][CO3] | [5M] |
|    | b | Discuss about any two types of sharpening filters in frequency domain along         | [L2][CO3] | [5M] |
|    |   | with the required expressions.                                                      |           |      |
| 9  | a | Define the terms: Luminance and Chrominance.                                        | [L1][CO3] | [4M] |
|    | b | Explain about the RGB and CMYK color models.                                        | [L2][CO3] | [6M] |
| 10 | a | Define the following terms: Saturation and Hue                                      | [L1][CO3] | [4M] |
|    | b | Discuss about CIE chromaticity diagram and mention its significance.                | [L2][CO3] | [6M] |



# $\underline{ \frac{UNIT-IV}{IMAGE\ DEGRADATION/RESTORATION\ \&\ IMAGE\ SEGMENTATION} }$

| 1  | a | What do you mean by image enhancement and image restoration?                                                        | [L1][CO4] | [2M]  |
|----|---|---------------------------------------------------------------------------------------------------------------------|-----------|-------|
|    | b | What are the advantages of a Wiener filter over an inverse filter?                                                  | [L1][CO4] | [2M]  |
|    | c | List the disadvantage of inverse filtering.                                                                         | [L1][CO4] | [2M]  |
|    | d | List the significant features of a median filter.                                                                   | [L1][CO4] | [2M]  |
|    | e | What is meant by image segmentation? Write its use in image processing.                                             | [L1][CO4] | [2M]  |
| 2  | a | Explain about degradation model with the help of block diagram.                                                     | [L2][CO4] | [5M]  |
|    | b | Discuss about the structure and mathematical functions for probability density functions of any 5 noise models.     | [L2][CO4] | [5M]  |
| 3  |   | Discuss the algebraic approach of constrained Least Square filter restoration.                                      | [L2][CO4] | [10M] |
| 4  |   | Explain in detail about the Wiener filter approach.                                                                 | [L2][CO4] | [10M] |
| 5  | a | Explain the fundamental steps performed in edge detection of images.                                                | [L2][CO4] | [5M]  |
|    | b | Summarize the concept of image gradient and its properties in edge detection.                                       | [L2][CO4] | [5M]  |
| 6  | a | Illustrate the operation of Prewitt mask & Sobel mask operators in edge detection.                                  | [L2][CO4] | [6M]  |
|    | b | List the fundamental approaches of edge linking and define the same.                                                | [L1][CO4] | [4M]  |
| 7  |   | Explain about the local processing approach of linking edge points with necessary steps.                            | [L5][CO4] | [10M] |
| 8  | a | Explain the role of thresholding in segmentation.                                                                   | [L2][CO4] | [5M]  |
|    | b | Summarize the steps in Otsu's algorithm for global thresholding.                                                    | [L2][CO4] | [5M]  |
| 9  |   | Explain the following with respect to motion in segmentation.  a) Spatial Techniques b) frequency domain techniques | [L2][CO4] | [10M] |
| 10 |   | Explain the procedure for image segmentation based on (a)Region growing (b) region splitting & merging              | [L2][CO4] | [10M] |

Course Code: 18EC0434



# $\frac{\text{UNIT} - \text{V}}{\text{WAVELETS \& MULTIRESOLUTION PROCESSING \& IMAGE COMPRESSION}}$

| 1  | a | What is the need for Compression?                                            | [L1][CO5] | [2M]           |
|----|---|------------------------------------------------------------------------------|-----------|----------------|
|    | b | Define compression ratio.                                                    | [L1][CO5] | [2M]           |
|    | c | List out the various image compression standards.                            | [L1][CO5] | [2M]           |
|    | d | What do you meant by wavelet packet?                                         | [L1][CO5] | [2M]           |
|    | e | List the significant advantages of image wavelet transforms.                 | [L1][CO5] | [2M]           |
| 2  | a | Explain about image pyramids in multi-resolution processing.                 | [L2][CO5] | [5M]           |
|    | b | Summarize the concept of sub band coding with respect to image processing.   | [L2][CO5] | [5M]           |
| 3  |   | Explain the following with respect to multi resolution expansions.           | [L2][CO5] | [10M]          |
|    |   | a)Scaling functions                                                          |           |                |
|    |   | b) wavelet functions                                                         |           |                |
| 4  |   | Explain the following with respect to Wavelet Transform (WT).                | [L2][CO5] | [10M]          |
|    |   | a) 1 D – Wavelet Transforms                                                  |           |                |
|    |   | b) 2D Wavelet Transforms                                                     |           |                |
| 5  |   | Explain                                                                      |           | [10M]          |
|    |   | a) Fast Wavelet Transforms                                                   | [L2][CO5] |                |
|    |   | b) Wavelet packets                                                           |           |                |
| 6  | a | What is redundancy in image compression? Discuss the importance of data      | [L2[CO6]  | [5M]           |
|    |   | redundancies.                                                                |           |                |
|    | b | Explain the various data redundancies with respect to image compression.     | [L2][CO6] | [5M]           |
| 7  |   | Classify the compression standards for images & videos and explain the same. | [L2][CO6] | [10 <b>M</b> ] |
| 8  |   | Explain the following with respect to image compression                      | [L2][CO6] | [10M]          |
|    |   | a) Run Length Coding                                                         |           |                |
|    |   | b) Bit Plane coding                                                          |           |                |
| 9  |   | Explain about a) Transform based coding b) Arithmetic and Huffman coding     | [L2][CO6] | [10M]          |
| 10 |   | Predict the Code word, Average Length (L), Entropy (H(s)), Efficiency of the | [L5][CO6] | [10M]          |
|    |   | word "COMMITTEE" using binary Huffman coding.                                |           |                |

Prepared by: Dr R.Ravindraiah, Ms. P Chandanakala, Ms. Y Haritha